经典面试题:ES如何做到亿级数据查询毫秒级返回?

面试题

es 在数据量很大的情况下(数十亿级别)如何提高查询效率啊?


ElasticSearch 在互联网公司大量真实的应用案例

国内现在有大量的公司都在使用 Elasticsearch,包括携程、滴滴、今日头条、饿了么、360安全、小米、vivo等诸多知名公司。

除了搜索之外,结合Kibana、Logstash、Beats,Elastic Stack还被广泛运用在大数据近实时分析领域,包括日志分析、指标监控、信息安全等多个领域。它可以帮助你探索海量结构化、非结构化数据,按需创建可视化报表,对监控数据设置报警阈值,甚至通过使用机器学习技术,自动识别异常状况。


Solr vs ElasticSearch,搜索技术哪家强

前言

Solr和ElasticSearch到底有一些什么不同?我在网上搜索了一些文章,这些文章要么是列出一个表,详细地介绍两者什么功能有,什么功能没有(比较好的一篇博客https://solr-vs-elasticsearch.com),要么是从大类出发(其中比较好的一篇文章 https://logz.io/blog/solr-vs-elasticsearch),比较两者的关注度,社区等等。但看完这些文章,还是没法解决我心中的疑惑。最近由于项目的原因,Solr和ElasticSearch都有所使用。最近又把solr和ElasticSearch的官方文档都过了一遍。对两者有了一些浅显的见解。所以在这里想跟大家分享下我的一些看法。在这篇文章中,我不会列出一个列表来说明两者的异同,而是抽出我觉得比较重要的几点来讲一讲。本文的对比基于Solr7.3和ElasticSearch7.4。两者都在快速迭代,可能有一些最新的进展我没有考虑到,同时我接触搜索引擎的时间不长,难免有一些错误或者我没关注到的点,欢迎大家指正。

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×